Equivalents of Ordered Fixed Point Theorems of Kirk, Caristi, Nadler, Banach, and others

نویسندگان

چکیده

Recently, we improved our long-standing Metatheorem in Fixed Point Theory. In this paper, as its applications, some well-known order theoretic fixed point theo- rems are equivalently formulated to existence theorems on maximal elements, com- mon points, common stationary and others. Such the ones due Banach, Nadler, Browder-Göhde-Kirk, Caristi-Kirk, Caristi, Brøndsted, possibly many

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Multivalued Caristi Type Fixed Point Theorems

In this paper, we prove some multivalued Caristi type fixed point theorems. These results generalize the corresponding generalized Caristi’s fixed point theorems due to Kada-Suzuki-Takahashi (1996), Bae (2003), Suzuki (2005), Khamsi (2008) and others. 2000 Mathematics Subject Classification: 47H09, 54H25.

متن کامل

Ordered S-Metric Spaces and Coupled Common Fixed Point Theorems of Integral Type Contraction

In the present paper, we introduces the notion of integral type contractive mapping with respect to ordered S-metric space and prove some coupled common fixed point results of integral type contractive mapping in ordered S-metric space. Moreover, we give an example to support our main result.

متن کامل

Fixed Point Theorems in Banach Space

In this paper,we establish fixed points theorems in Banach space using Mann Iteration for nonexpansive and asymtotically nonexpansive mappings . Iteration scheme is defined by (2.1) and (2.2). We extended the work of Mann.

متن کامل

Functional Versions of the Caristi-kirk Theorem

Many functional versions of the Caristi-Kirk fixed point theorem are nothing but logical equivalents of the result in question.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in the theory of nonlinear analysis and its applications

سال: 2022

ISSN: ['2587-2648']

DOI: https://doi.org/10.31197/atnaa.1127248